Передача данных по радиоканалу на большие расстояния. Передача данных по радиотракту. Классификация узкополосных радиомодемов

Введение

1. Аналитический обзор

1.1 Обзор способов кодирования-декодирования информации

1.2 Сравнительный анализ способов кодирования декодирования информации

1.3 Анализ аппаратной реализации

1.4 Сравнительный анализ способов аппаратной реализации

1.5 Выводы по аналитическому обзору

2. Разработка структурной схемы

3. Синтез схемы электрической принципиальной

3.1 Выбор цифрового сигнального процессора

3.2 Выбор кодека

3.3 Выбор драйвера интерфейса RS - 232

3.4 Выбор памяти с ультрафиолетовым стиранием

3.5 Выбор вспомагательных элементов схемы

4. Разработка алгоритма программы

4.1 Блок инициализации

4.2 Интерфейс приема / передачи

5. Разработка программного обеспечения

6. Технико-экономический расчет

7. Охрана труда

Приложение


Введение

Необходимость приёма и передачи информации беспокоило человечество всегда. В современном, насыщеном компьютерной техникой мире, это получило наиболее широкое распространение. Возможность соединения нескольких компьютеров, находящихся на расстоянии позволяющим соединить их эл. проводом, и доступ к их данным, добавила качественно новую ступень к использованию возможностей современных ЭВМ. Такое соединение называется локальной сетью. Также после этого появилось и понятие глобальной сети, при этом компьютеры могут не находиться рядом, а допустим в разных городах. При таком соединении используется специальное устройство называемое "модем". Связь при этом обеспечивается по телефонной линии.

Модем - это сокращение от МОдулятор - ДЕМодулятор.

Также еще существует способ приёма и передачи информации между компьютерами по радиоканалу. В этом случае также используется устройство модуляции/демодуляции (модем). При этом с компьютером и модемом используется также отдельное устройство - блок приёма и передачи информации по радиоканалу. Это достаточно громоздкое устройство и каждый пользователь ЭВМ, конечно, не может себе его приобрести. Но такая комбинация технических средств очень эффективна при связи двух объектов находящихся на очень большом расстоянии и не обладающими доступом к телефонной линии. Например, это могут быть судно, находящееся в рейсе и порт приписки передающий информацию со спутника о надвигающейся буре.

Конечно, модем в этом случае будет по функциям отличаться от модема работающего с телефонной линией. Т.к. тут нет понятия дозвона до абонента, дуплексная связь также здесь не допустима. В принципе функции дозвона и другие берет на себе блок приёма и передачи информации по радиоканалу. Модем же только ожидает получение сигнала, производит его демодуляцию, образуя цифровой код, и передает его в компьютер. При передаче, модем принимает цифровой код, модулирует его, преобразует в аналоговый сигнал и передает в блок передачи информации по радиоканалу.

В наше время технология производства интегральных микросхем, микроконтроллеров и т.п. находится на очень высоком уровне, постоянно совершенствуется и изобретает все новые виды микрочипов. Одним из таких микрочипов является DSP - digital signal processor (цифровой сигнальный процессор). Это идеальное средство для обработки сигналов. Имея встроенный язык программирования, он позволяет его настраивать на любую работу необходимую электронщику. Практически во всех современных модемах независимо от назначения установленны DSP.

В данном дипломном проекте мы будем проектировать устройство, которое будет принимать и передавать данные по радиоканалу, при этом выполняя кодирование и декодирование информации, используя цифровой сигнальный процессор (DSP).


1. Аналитический обзор

1.1 Обзор способов кодирования - декодирования информации

Для выбора необходимого пути проектирования устройства требуется провести анализ современных способов и средств кодирования-декодирования информации.

С начала рассмотрим способы решения кодирования-декодирования информации. Для этого рассмотрим современные способы модуляции - демодуляции сигнала.

Как сказано выше модемы модулируют сигнал для передачи по телефонным или радио каналам, но сигнал может быть промодулирован разными способами.

Модуляция - изменение одного или нескольких параметров несущего синусоидального колебания (амплитуды, частоты, фазы) в соответствии со значениями двоичной информации, передаваемой источником.

В модемах используется разновидность модуляции, так называемая "манипуляция", при которой указанные модулируемые параметры могут иметь только фиксированные значения из некоторого определенного набора.

Модуляция позволяет согласовать спектр передаваемого информационного сигнала с полосой пропускания телефонного или радио канала. При малых скоростях передачи (до 1200 бит/с) в модемах применяется частотная модуляция, реализация которой на таких скоростях наиболее проста. При средних скоростях передачи (1200 - 4800 бит/с) используется дифференциальная разностная модуляция с числом возможных изменений фазовых положений от двух (1200 бит/с) до восьми (4800 бит/с) (фазовая модуляция). Передаваемые значения цифровой информации содержатся в приращениях фазы между данным и предыдущим элементом модулированного сигнала. При больших скоростях передачи (>4800 бит/с) и при передаче по коммутируемым каналам с частотным разделением направлений передачи, начиная с 2400 бит/с, используется комбинированная амплитудно-фазовая модуляция). При использовании этого вида модуляции цифровая информация содержится как в значении амплитуды, так и в приращениях фазы несущей частоты. При амплитудно-фазовой и многопозиционной фазовой модуляциях количество возможных позиций модулированного сигнала (или количество векторов сигнала) более двух. В этом случае один элемент модулированного сигнала содержит несколько битов цифровой информации (это число равно двоичному логарифму от количества возможных векторов модулированного сигнала).

Фазовая модуляция:

При использовании так называемой относительная фазовая манипуляция (phase shift keying, PSK), т.е. модуляция, при которой фаза несущей принимает только фиксированные значения из ряда допустимых значений (например, 0 , 90 , 180 и 270 град.), а информация закладывается в изменения фазы несущего колебания. При указанном выше наборе возможных фаз каждому изменению фазы соответствует определенное значение дибита, т.е. двух последовательных битов информации. Фазовая манипуляция относится к двухполосным методам модуляции, т.е. спектр модулированного сигнала располагается симметрично относительно несущей частоты, а ширина спектра в Гц на уровне 0,5 от его значения на несущей частоте равна модуляционной линейной скорости, выраженной в Бодах. Наиболее часто используются в модемах такие разновидности фазовой манипуляции, как относительная фазовая манипуляция (ОФМ) /скорость 1200 бит/с, два положения фазы/, четырехпозиционная (или квадратурная фазовая манипуляция /2400 бит/с, четыре положения фазы/) и восьмипозиционная (4800 бит/с, восемь положений фазы). Иногда в литературе указанные виды манипуляции называются соответственно ФРМ (фазоразностная модуляция), ДОФМ (двухкратная фазовая модуляция) и ТОФМ (трехкратная фазовая модуляция). Дальнейшее увеличение числа позиций с целью повышения скорости приводит к резкому снижению помехоустойчивости, поэтому на более высоких скоростях стали применяться комбинированные амплитудно-фазовые методы модуляции.

Амплитудно - фазовая модуляция:

В данном виде модуляции для повышения пропускной способности используется одновременная манипуляция двух параметров несущего колебания: амплитуды и фазы. Каждый возможный элемент модулированного сигнала (вектор сигнала или точка сигнального пространства) характеризуется значением амплитуды и фазы.

Для дальнейшего повышения скорости передачи количество "точек" пространства модулированного сигнала увеличивается в число раз, кратное двум. В настоящее время в модемах используются методы амплитудно-фазовой модуляции с числом возможных позиций сигнала до 256. Это означает, что скорость передачи информации превышает модуляционную линейную скорость до 7 раз.

Для обеспечения максимальной помехоустойчивости точки сигнального пространства размещаются на равном расстоянии с огибающей всех точек в форме квадрата (16-ти позиционная квадратурная АМ), восьмиугольника и т.п. Увеличение числа позиций сигнала приводит к быстрому снижению помехо-устойчивости приема.

Радикальным средством обеспечения помехоустойчивой передачи стало применение сочетания модуляции с "решетчатым" кодированием. При использовании этого метода вводится некоторая избыточность в пространство сигналов и за счет этого создаются корреляционные связи между передаваемыми сим-волами. Благодаря этому на приеме на основе анализа последо-вательности принятых элементов модулированного сигнала возможно выявление и исправление ошибок. Практически это дает значительное повышение помехоустойчивости приема.

Разновидность амплитудно-фазовой модуляции - 16-ти позиционная квадратурная АМ (сигнальное пространство 4х4 точек в форме квадрата, точки равноудалены одна от другой, и по 4 точки в каждом квадрате) используется в дуплексных модемах.

Частотнаямодуляция: (Frequency shift keying, FSK)

В модемах используется так называемая частотная манипуляция, при которой каждому значению бита информации ("1" и "0") соответствует определенная частота синусоидального сигнала.

Спектральные характеристики сигналов с частотной манипуляцией допускают относительно простую реализацию модемов до скоростей 1200 бит/с.

Модуляция с минимальным сдвигом (MSK)

Построение сетей передачи данных по радиоканалу во многих случаях надежнее и дешевле, чем сети обмена данными с использованием коммутируемых или арендованным каналов. Для организации связи с подвижными объектами наиболее подходящщее решение - радиосвязь. Каналы общего доступа, такие как каналы сотовых операторов не гарантируют достаточной пропускной способности да и вообще бесперебойной работы.

В условиях, когда отсутствует развитая инфраструктура сетей связи, использование радиосредств для передачи данных зачастую является единственно разумным вариантом организации связи. Сеть передачи данных с использованием радиомодемов может быть оперативно развернута практически в любом географическом регионе. В зависимости от используемых приемопередатчиков и антенн такая сеть может обслуживать своих абонентов в зоне радиусом от единиц до десятков и даже сотен километров. Огромную практическую ценность радиомодемы имеют там, где необходима передача небольших объемов информации (документов, справок, анкет, телеметрии, ответов на запросы к базам данных и т.п.). Особенно если необходимо гарантировать время реакции (ответа) удаленного устройства.

Радио-модемы часто называют пакетными контроллерами (TNC - Terminal Node Controller) по-скольку в их состав входит специализированный контроллер, реализующий функции обмена данными с компьютером, управления процедурами форматирования кадров и доступа к общему радиоканалу в соответствии с реализованным протоколом множественного доступа. Рассматриваемые радиомодемы во многом похожи на интеллектуальные модемы для телефонных каналов КТСОП. Главное же их отличие в том, что радиомодемы ориентированы для работы в едином радиоканале со многими пользователями (в канале множественного доступа), а не в канале типа "точка-точка".

Алгоритмы функционирования пакетных радиосетей регламентируются Рекомендацией АХ.25.

Стандарт АХ.25

Рекомендация АХ.25 устанавливает единый протокол обмена пакетами, т.е. обязательный для всех пользователей пакетных радиосетей порядок осуществления обмена данными. Стандарт АХ.25 представляет собой специально переработанную для пакетных радиосетей версию стандарта Х.25.

Особенность пакетных радиосетей заключается в том, что один и тот же радиоканал используется для передачи данных всеми пользователями сети в режиме множественного доступа. Протокол обмена АХ.25 предусматривает множественный доступ в канал связи с контролем занятости. Все пользователи (абоненты) сети считаются равноправными. Прежде чем начать передачу радиомодем проверяет свободен канал или нет. Если канал занят, то передача своих данных радиомодемом откладывается до момента его освобождения. Если радиомодем обнаруживает канал свободным, то он сразу же начинает передачу своей информации. Очевидно, что в тот же самый момент может начать передачу и любой другой пользователь данной радиосети. В этом случае происходит наложение (конфликт) сигналов двух радиомодемов, в результате чего их данные с высокой вероятностью серьезно исказятся под воздействием интерференционных помех. Радиомодем-передатчик узнает об этом получив отрицательное подтверждения на переданный пакет данных от радиомодема-получателя или в результате превышения времени тайм-аута. В такой ситуации он обязан будет повторить передачу этого пакета по уже описанному алгоритму. По-скольку пауза перед следующей попыткой связи задается у каждого устройства случайным образом, то вероятность того, что в следующий раз модемы начнут передачу одновременно крайне низка.

При пакетной связи информация в канале передается в виде отдельных блоков - кадров. В основном их формат соответствует формату кадров известного протокола HDLC, однако есть отличия, рассматриваемые далее.

Формат кадров

FLAG ADRES CONT CRC-16 FLAG
011111110 14-70 байт 1 байт 2 байт 011111110
FLAG ADRES CONT INFORM CRC-16 FLAG
011111110 14-70 байт 1 байт до 256 байт 2 байт 011111110

Начало и конец кадра отмечаются флагами FLAG, т.е. комбинациями вида "011111110", что облегчает прием кадра на фоне помех. Поле адреса ADRES содержит адреса отправителя, получателя и станций - ретрансляторов, если таковые имеются. Размер адресного поля может составлять от 14 до 70 байт.

Поле управления CONT определяет тип кадра: информационный или служебный. Служебные кадры, в свою очередь, могут подразделяться на супервизорные и ненумерованные. Супервизорные кадры служат для подтверждения приема неискаженных помехами кадров или для запроса повторной передачи искаженных кадров. Ненумерованные кадры предназначены для установления логического соединения и в случаях управления обменом в сети.

Длина информационного поля INFORM, представляющая собой пакет сетевого уровня, в пакетных радиосетях обычно не превышает несколько сотен байт. Увеличение длины информационного поля приводит к повышению вероятности поражения помехой и возрастанию времени ожидания передачи пакетов другими пользователями.

При реализации сетевого (третьего) уровня протокола АХ.25 используется поле определения протокола, которое выступает как часть информационного поля и является необязательным.

Контрольное поле кадра (CRC-16) предназначено для обнаружения ошибок в кадре при его передаче.

Адресное поле может содержать от двух до десяти логических адресов. Простейшим случаем является адресное поле из двух адресов (два пользователя). Если пользователи находятся вне зона радиовидимости, то могут использовать радиомодемы других пользователей сети в качестве ретрансляторов. Таких ретрансляторов для одного логического канала может быть до восьми. Адреса ретрансляторов также присутствуют в адресном поле кадра. Таким образом поля адреса делится на три подполя: получателя, отправителя и ретранслятора. Формат адресного поля следующий:

Занесенные в него адреса могут состоять не более чем из шести символов. Если адрес состоит менее чем из шести символов, он дополняется соответствующим количеством пробелов.

После адреса в каждом подполе идет вторичный идентификатор пользователя (абонента) SSID (Secondary Station IDentifier). Это некоторое число от 0 до 15. Оно определяет уровень сервиса данного пользователя, например, что он имеет несколько станций пакетной радиосвязи, работающих в разных диапазонах, поддерживает функции электронного почтового ящика BBS, или является сетевым узлом - ретранслятором NET/ROM. Обычный пользователь работает без вторичного идентификатора или с идентификатором равным 1. Идентификатор BBS и узловой станции может быть равен значениям от 2 до 9. При прохождении кадра транзитом через узел NET/ROM вторичный идентификатор получает значения от 10 до 15, в зависимости от того, через сколько узловых станций он прошел.

Значение идентификатора в двоичном виде занимает четыре бита - со второго по пятый в байте, следующем после каждого адреса. Первый бит этого байта используется как признак конца адресного поля. Если он равен единице, то это признак последнего банта адресного поля. Для шестого и седьмого битов рассматриваемого байта нет определенного назначения, и они могут использоваться в отдельных сетях по усмотрению ее пользователей или администратора сети, если такой имеется.

Восьмой бит в последнем байте подполя отправителя и получателя всегда устанавливается в нуль. В подполе ретранслятора его устанавливают в единицу, если кадр прошел через ретранслятор, и в нуль, если нет. Установление бита ретранслятора необходимо для того, чтобы ретрансляторы, находящиеся в зоне радиовидимости друг друга, следовали очередности передачи кадров через себя и выполняли эту процедуру строго в порядке, указанном отправителем кадра.

Управляющее поле содержит информацию о типе кадра, которая используется для определения назначения сообщения. Протокол АХ.25 использует три основных типа кадров: I - информационные, содержащие информацию пользователя либо прикладного процесса; S - супервизорные (служебные), подтверждающие правильный прием кадра или содержащие запрос на выдачу очередного информационного кадра; U - ненумерованные кадры, управляющие запросами на соединение-разъединение.

Кроме того, управляющее поле содержит номер кадра, который ожидает принять радиомодем корреспондента-получателя. Для повторной передачи искаженных кадров используются механизм ARQ типа GBN и SR.

Информационное поле кадра содержит информационный пакет размером до 256 байт. При передачи текстовой информации в терминальном режиме информационное поле представляет собой последовательность символов пользователя, которые при приеме отображается на экране компьютера корреспондента.

Иногда первый байт информационного поля выступает в качестве самостоятельного подполя-идентификатора протокола. Это происходит при использовании сетевого (третьего) уровня протокола АХ.25 при прохождении пакета через станции NET /ROM.

Контрольное поле кадра, как и в других протоколах, служит для проверки правильности передачи данных. Формирование контрольного поля кадра происходит при использовании образующего полинома CRC-1 б ^x^=-c +х +х +1 в соответствии с алгоритмом, приведенным в Рекомендации ISO 3309, аналогично правилам формирования контрольного поля кадра протоколов HDLC и V.42. При приеме также подсчитывается контрольное поле, которое сравнивается с принятым значением. При несовпадении контрольных последовательностей осуществляется запрос повторной передачи кадра.

Физическая реализация радиомодемов

Типичная станция пакетной связи включает в себя компьютер (обычно портативный типа notebook), собственно радиомодем (TNC), приемопередатчик (радиостанция) УКВ или КВ-диапазона.

Современные интергальные радиомодемы выполнены в едином корпусе, содержащем контроллер портов, контроллер управления передатчиком, специализированный приемопередатчик с малым временем переключения прием/передача.

Компьютер взаимодействует с радиомодемом посредством одного из известных итерфейсов DTE-DCE. Практически всегда применяется последовательный интерфейс RS-232.

Передаваемые из компьютера в радиомодем данные могут быть либо командой, либо информацией, предназначенной для передачи по радиоканалу. В первом случае команда декодируется и исполняется, во втором - формируется кадр в соответствии с протоколом АХ.25. Перед непосредственной передачей кадра последовательность его битов кодируется линейным кодом без возврата к нулю NRZ-I (Non Return to Zeroln-verted). Согласно правила кодирования NRZ-I перепад физического уровня сигнала происходит в случае, когда в исходной последовательности данных встречается нуль.

Временная диаграмма, поясняющая процесс кодирования кодом NRZ-I приведена на следующем рисунке:

Пакетный радиомодем представляет собой совокупность двух устройств: собственно модема и собственно контроллера TNC. Контроллер и модем связаны между собой четырьмя
линиями: TxD - для передачи кадров в коде NRZ-I, RxD - для приема кадров от модема также в коде NRZ-I, РТТ - для подачи сигнала включения модулятора и DCD - для подачи сигнала занятости канала с модема к контроллеру. Обычно модем и пакетный контроллер конструктивно выполняются в одном корпусе. Это и является причиной того, что пакетные радиомодемы называют контроллерами TNC.

Перед передачей кадра контроллер включает модем с помощью сигнала по линии РТТ, а по линии TxD посылает кадр в коде NRZ-I. Модем модулирует получаемую последовательность в соответствии с принятым способом модуляции. Промодулированный сигнал с выхода модулятора поступает на микрофонный вход MIC передатчика.

При приеме кадров модулированная последовательностью импульсов несущая поступает с выхода EAR приемника радиостанции на вход демодулятора. С демодулятора принятый кадр в виде последовательности импульсов в коде NRZ-I поступает в контроллер пакетного радиомодема.

Одновременно с появлением в канале сигнала в модеме срабатывает специ альный детектор, вырабатывающий на своем выходе сигнал занятости канала. Сигнал РТТ, помимо включения модулятора, также выполняет функцию переключения мощности передачи. Обычно она реализуется посредством транзисторного ключа, который переключает приемопередатчик с режима приема в режим передачи.

В пакетной радиосвязи на базе типовых радиостанций применяются два способа модуляции для коротких и ультракоротких волн. На KB используется однополосная модуляция для формирования канала тональной частоты в радиоканале. Для передачи данных применяется частотная модуляция поднесущей в полосе частот телефонного канала 0,3 до 3,4 кГц. Значение частоты поднесущей может быть различной, а разнос частот всегда равен 200 Гц.

В таком режиме обеспечивается скорость передачи, равная 300 бит/с. В Европе обычно используется частота 1850 Гц для передачи "0" и 1650 Гц для "1".

В У KB диапазоне чаще работают на скорости 1200 бит/с при использовании частотной модуляции с разносом поднесущих частот 1000 Гц. Принято, что "0" соответствует частота 1200 Гц, а "1" - 2200 Гц. Реже в диапазоне УКВ применяют относительную фазовую модуляцию (ОФМ). В этом случае достигаются скорости передачи 2400, 4800, а иногда 9600 и 19200 бит/с.

В качестве примера в следующей таблице приведены сравнительные характеристики некоторых промышленно выпускаемых пакетных радиомодемов.

Характеристика РК-88 РК-900 DSP-2232 СТЕК АТМА
Скорость передачи, Кбит/с 0,3,0,6,1.2, 2,4, 4,8. 9,6 0,3-19,2 0,3-19,2 1,2 2,4
Объем ПЗУ, Кбит 32 256 384
Объем ОЗУ, Кбит 64 64
Выходной уровень, мВ 5300 5-100 5-100
Вес, кг 1,1 2,84 1,7 4,5 1,5
Габариты, мм 191х152х38 300х305х89 305х249х74 330х270х90 220х270х45

10.4. Применение радиомодемов

Для успешного использования радиомодема необходимо правильное

Применение радиомодемов

Для успешного использования радиомодема необходимо правильное его подключение к компьютеру с одной стороны, и к радиостанции - с другой.

Для подключения радиомодема к компьютеру при использовании последовательного интерфейса RS-232 необходимо обратить внимание на правильность (одинаковость) установки параметров обмена между компьютером и радиомодемом: скорость, размер информационного символа (7 или 8 бит), четность (Even - четный бит, Odd - нечетный, Mark - всегда 1, Space - всегда 0) и число стоповых бит (1, 1,5 или 2). Эти параметры в радиомодемах устанавливаются DIP-переключателями, реже перемычками или программно.

Во многих современных моделях радиомодемов реализована автоматическая настройка на требуемую скорость обмена с компьютером. Особое внимание следует обратить на используемый протокол управления потоком: аппаратный или программный. При этом каждому из протоколов должен соответствовать свой соединительный кабель с соответствующей распайкой.

Радиомодем со встроенным контроллером является интеллектуальным устройством. Он выполняет множество функций и имеет свою систему команд. По этой причине не обязательно подключать к нему персональный компьютер, в простейшем случае достаточно терминала. Компьютер удобнее тем, что позволяет записывать в память принятую информацию, подготавливать к передаче данные и выполнять ряд других сервисных функций.

Для совместной работы радиомодема и компьютера, последний необходимо перевести в режим терминала с помощью любой из доступных терминальных программ. Такие программы существуют для любых типов компьютеров. Наиболее известными терминальными программами для IBM PC-совместимых компьютеров являются TELIX, PROCOMM, МТЕ, QMODEM и т.д. Использовать можно любую из них. Существуют и специализированные терминальные программы для пакетной связи, например, PC-Pacratt - для Windows, Мас-RATT - для компьютеров Macintosh, COM-Pacratt - для компьютеров Commodore. Также разработаны и имеются в продаже программы передачи факсов в пакетных радиосетях. Это программы AEA-FAX, АЕА WeFAX и ряд других. Продаваемые радиомодемы, как правило, комплектуются дискетой с терминальной программой.

Сдерживающим фактором применения для радиомодемов всего спектра программного обеспечения, разработанного для обычных модемов, является система команд управления радиомодема, отличная от набора АТ-команд.

Единого рецепта для подключения радиомодемов и радиостанций разных типов нет и быть не может. Однако можно сделать несколько общих замечаний.

Наиболее просто подключить радиостанцию, имеющую разъем для выносной гарнитуры, - устройства, совмещающего функции микрофона, телефона (громкоговорителя) и переключателя управления приемом/передачей радиостанции. В этом случае подключение сводится к изготовления соединительного кабеля от радиомодема к приемопередатчику. При этом, как и в любом другом случае, необходимо тщательно изучить техническую документацию как на радиомодем, так и на радиостанцию, особенно, касающуюся цепей коммутации.

Если радиостанция не имеет разъема для выносной гарнитуры, то придется либо отказаться от ее использования, либо вскрывать корпус и подключаться непосредственно к схеме станции, опять же руководствуясь документацией. Такая модернизация радиостанции является довольно сложным и рискованным делом и должна производится квалифицированными специалистами.

Технология передачи данных по радиоканалу довольно популярна, и многие производители электросчетчиков обратили на нее внимание.

Главные плюсы такой технологии: дешевизна, простота, дальность действия (до 10 км) и низкое энергопотребление (возможна автономная работа от батарейки до 10 лет).

Для беспроводного обмена данными используются радиочастотные диапазоны, не требующие оформления разрешений. В России для этих целей выделены частотные диапазоны 433.075-434.750 МГц, 868,7-869,2 МГц и 2400-2483,5 МГц.

Диапазон 433 используется дольше остальных, поэтому на этих частотах работает большое количество устройств, радиоэфир сильно загружен и сильно «засорен» помехами особенно в городских условиях. АСКУЭ, работающая на этих частотах применима исключительно в сельской местности.

Для диапазона 868 разрешена мощность в 2,5 раза больше, чем у 433, поэтому антенны менее громоздкие. Также на этих частотах меньше уровень фоновых и индустриальных помех. В настоящее время при выполнении систем АСКУЭ в РФ этот диапазон частот не нашел широкого применения, однако технологии, использующие частоты 868 МГц, будут развиваться.

Развитие технологии

Чтобы решить проблемы дальности связи и плохого сигнала, в последние годы появились радиомодемы с функцией ретрансляции сигнала. Эти устройства принимают сигнал от других модемов и передают его дальше. Таким образом, если расстояние между базовым модемом и каким-либо модемом сети больше, чем максимальное расстояние прямой видимости, то сигнал пойдет через промежуточные модемы.


Помимо ретрансляции радиомодемы научились выстраивать единую сеть и автоматически определять кратчайший путь до приемного оборудования. В итоге, если какой-то модем выйдет из строя, то сеть сама перестроится и передаст данные через другой модем. Благодаря такому механизму значительно повышается надежность всей сети.

Эти идеи с ретрансляцией сигнала и построением сети производители радиомодемов переняли из стандарта ZigBee.

О стандарте передачи данных ZigBee

Стандарт ZigBee предусматривает частотные каналы в диапазонах 868 МГц, 915 МГц и 2,4 ГГц. Наибольшие скорости передачи данных и наивысшая помехоустойчивость достигаются в диапазоне 2,4 ГГц. Поэтому большинство производителей микросхем выпускают приемопередатчики именно для этого диапазона, в котором предусмотрено 16 частотных каналов с шагом 5 МГц (полоса частот 2400-2483,5 МГц).

Скорость передачи данных вместе со служебной информацией в эфире составляет 250 кбит/c . При этом средняя пропускная способность узла для полезных данных в зависимости от загруженности сети и количества ретрансляций может лежать в пределах 5 ... 40 кбит/с.

Расстояния между узлами сети составляют десятки метров при работе внутри помещения и сотни метров на открытом пространстве. За счет ретрансляции зона покрытия сети может значительно увеличиваться.

В основе сети ZigBee лежит ячеистая топология (mesh-топология). В такой сети, каждое устройство может связываться с любым другим устройством как напрямую, так и через промежуточные узлы сети. Ячеистая топология предлагает альтернативные варианты выбора маршрута между узлами. Сообщения поступают от узла к узлу, пока не достигнут конечного получателя. Возможны различные пути прохождения сообщений, что повышает доступность сети в случае выхода из строя того или иного звена.*

* по материалам сайта http://www.wless.ru


Чтобы наглядно понять преимущества технологии ZigBee представим 15-ти этажный жилой, где все счетчики оборудованы ZigBee-модемами. Если мощность сигнала модемов на всех этажах одинакова и ее хватает только на преодоление 4-х этажей, то для счетчиков 15 этажа маршрут может быть следующий: 15 этаж – 11 этаж -7 этаж – 3 этаж – подвал. Если на 11 этаже маршрутизатор перестанет работать, то сеть автоматически инициирует поиск нового маршрута, который может получиться следующим: 15 этаж – 12 этаж - 8 этаж – 4 этаж – подвал.

Такой подход повышает работоспособность и помехоустойчивость всей сети и дальность связи, даже если каждый модем в отдельности является маломощным устройством.

Подведем итоги

  • Системы АСКУЭ на радиомодемах, как правило, недорогие;
  • Радиомодемы хорошо зарекомендовали себя в загородных поселках, где радиоэфир не так загружен, как в городе;
  • Для крупных поселков необходимо ориентироваться на радиомодемы с ретрансляцией сигнала.

Журнал «Радио» №12 2002 г.
Ракович Н.Н.

Начнем обзор ИС для передачи/приема данных в радиодиапазоне сверхрегенеративных приёмников серии RRn-xxx. Это функционально законченные приборы (блок-схема – на рис. 1), выполненные по гибридной толстоплёночной технологии. В состав приемника входят: предварительный усилитель высокой частоты, ВЧ-генератор, схема срыва колебаний, низкочастотный фильтр, не пропускающий на выход колебания ВЧ-генератора при отсутствии внешнего сигнала, усилитель низкой частоты и компаратор для формирования сигнала с уровнями ТТЛ. То есть, один из вариантов схемы сверхрегенеративного приёмника (компаратор не в счет), но только без «обвязки». Типовая схема включения проста и приведена на рис. 2. Отметим некоторые особенности ИС этой серии, которые, надеюсь, помогут разработчикам.


Рис. 1. Блок-схема сверхрегенеративных приемников серии RRn-xxx



Рис. 2. Схема включения сверхрегенеративных приемников серии RRn-xxx (на примере RR3-xxx)

Применение лазерной подстройки контуров в изделиях RR3, RR4, RR6, RR10, RR11 позволило улучшить точность настройки до ±0,2 МГц, что в 2,5 раза лучше, чем в изделиях RR1 или RR8. В приборе RR4-xxx реализован каскодный вход и получен наиболее низкий уровень спектра излучения (-70 дБм). В тех случаях, когда необходимо малое потребление, фирма Telecontrolli рекомендует применять RR6 или RR11 (ток потребления 0,5 мА и 0,3 мА соответственно), но при этом Вы несколько проиграете в чувствительности. А некоторое ухудшение параметров RR8 по сравнению с другими ИС этой серии является платой за питание 3В.

Последней микросхемой в серии RRn-xxx является изделие RR15, параметры которого наиболее привлекательны: точность настройки - ±75 кГц; полоса пропускания по уровню -3 дБ составляет - ±250 кГц, уровень испускаемого спектра частот -75 дБм, металлический экран. Только одно «но» – единственная рабочая частота 433 МГц.

Завершая разговор об этой группе приборов, приведем некоторые их технические параметры.

Таблица 1.

RR3 RR4 RR6 RR8 RR10 RR11 RR15
Напряжение питания, В 5 5 5 3 5 5 5
Ток потребления, мА 2,5 2,5 0,5 0,5 1,2 0,3 4
Рабочая частота, МГц 200-450 200-450 200-450 280-450 200-450 280-450 433,9
Точность настройки, МГц ±0,5 ±0,2 ±0,2 ±0,2 ±0,2 ±0,2 ±75 кГц
2 2 2 2 2 2 4,8÷9,6 кбит/с
Чувствительность, дБм -105 -105 -95 -90 -102 -95 -102
Уровень излучения, дБм -65 -70 -65 -65 -65 -65 -75
-25…+80 -25…+80 -25…+80 -25…+80 -25…+80 -25…+80 -25…+80
Примечание: * (-100)dBm соответствуют 2,2 uVrms

Недостатком приемников прямого преобразования является их невысокая селективность, особенно при высокой напряжённости электромагнитного поля. Для получения более высокого качества радиоприёма предназначены супергетеродинные приемники серии RRSx-xxx с амплитудной модуляцией и серии RRFx-xxx с частотной модуляцией.

Блок-схема супергетеродина RRS1-xxx ÷ RRS3-xxx приведена на рис. 3. Сигнал с антенны поступает на вход ПАВ-фильтра и, пройдя через смеситель, на который поступает так же сигнал с гетеродина, проходит через фильтр ПЧ. Далее его ожидают демодулятор АМ-сигнала и компаратор, формирующий цифровой сигнал. Среди этих приборов микросхема RRS2 имеет большую чувствительность и более высокий уровень излучения (сказывается отсутствие ВЧ-фильтра на ПАВ), но и более низкую стоимость. Входной фильтр с предусилителем в приборе RRS3 позволил получить узкую полосу на все том же уровне -3 дБ и самый низкий уровень шумов (основные параметры этих ИС приведены в таблице 2).



Рис. 3. Блок-схема супергетеродина RRS1-xxx ÷ RRS3-xxx

Таблица 2.

RRS1 RRS2 RRS3 RRQ2 RRFQ1
Напряжение питания, В 5 5 5 5 5
Ток потребления, мА 3,7÷5 3,7÷5 5 5 5,5
Рабочая частота, МГц 315/418/433 315/418/433 433,92 433,9/868,35 315/418/433
Промежуточная частота, кГц 500 500 500 10,7 МГц 1000
Скорость передачи данных, кГц 3 3 3 4,8 кбит/с А: 2,4 кбит/с
В: 4,8 кбит/с
С: 9,6 кбит/с
Чувствительность, дБм -100 -102 -106 -107/-102 -90
Уровень излучения, дБм -65 -50 -70 -70 -70
Диапазон рабочих температур, °С -25…+80 -25…+80 -25…+80 -25…+80 -25…+80

Схема включения приемников RRS1-xxx ÷ RRS3-xxx практически такая же, что и у сверхрегенеративных приёмников.

Структурная схема приемника с частотной модуляцией RRF1-xxx отличается от RRSх-xxx входным фильтром с предусилителем и FM-демодулятором вместо АМ (рис. 4). Параметры – в таблице 2.



Рис. 4. Структурная схема приемника с частотной модуляцией RRF1-xxx (отличие от RRSх-xxx - входной фильтр с предусилителем и FM-демодулятором вместо АМ)

Завершая краткий обзор приемников, упомяну еще два: RRQ2-xxx и RRFQ1-xxx (параметры – в той же таблице 2). В обоих приемниках (с АМ и FM соответственно) вместо гетеродина применен синтезатор частоты с фазовой синхронизацией и кварцевый резонатор (блок-схема RRQ2-xxx – на рис. 5).



Рис. 5. Блок-схема приемников RRQ2-xxx и RRFQ1-xxx (синтезатор частоты с фазовой синхронизацией и кварцевый резонатор вместо геродина)

Фирма Telecontrolli выпускает передатчики (пара к вышеупомянутым приемникам) как с амплитудной модуляцией (серия RTx-xxx), так и с частотной модуляцией (серия RTFх-ххх) (основные параметры – в таблице 3).

Таблица 3.

Ввиду относительной простоты схемы передатчиков серии RTx-xxx и их функциональной завершенности приведу только их структурные схемы (рис. 6 - 8). Типовую схему включения можно увидеть на рис. 9 (на примере RT4-ххх).



Рис. 6. Структурная схема передатчика RT4-xxx



Рис. 7. Структурная схема передатчика RT5-xxx



Рис. 8. Структурная схема передатчика RT6-xxx



Рис. 9. Схема включения передатчиков серии RTx-xxx

Мы не рассматриваем две младшие ИС этой серии (RT1 и RT2), ввиду их простоты и отсутствия нормированных параметров по шуму, выходной мощности и уровню входного напряжения.

Завершая краткий обзор компонентов фирмы Telecontrolli, работающих в диапазоне СВЧ, остановимся на двух передатчиках со встроенным кварцевым генератором: RTQ1-xxx и RTFQ1-xxx. Блок-схемы передатчиков приведены на рис. 10 и 11 соответственно. Для расширения возможностей по снижению потребления в «ждущем» режиме предусмотрен вывод разрешения работы синтезатора и выходного усилителя. Схема включения на рис. 12.



Рис. 10. Блок-схема передатчика со встроенным кварцевым генератором RTQ1-xxx



Рис. 11. Блок-схема передатчика со встроенным кварцевым генератором RTFQ1-xxx



Рис. 12. Схема включения RTQ1-xxx

RTFQ1 замечательна тем, что имеет девиацию частоты ±30 кГц (всего!!! при рабочей частоте 433МГц), а точность настройки частоты - ±25 кГц (типовое значение - 0).

Читатели наверняка обратили внимание на то, что все примеры рассмотрены для диапазона 433 МГц. Это связано с тем, что согласно решения № 64 от 01.03.2000 г. «О выделении полосы частот 433,050 - 434,790 МГц для маломощных радиостанций» гражданам и субъектам хозяйствования Республики Беларусь разрешено «1. …использование на вторичной основе полосы частот 433,050 - 434,790 МГц юридическими и физическими лицами для разработки, производства, ввоза из-за границы и эксплуатации предназначенных для речевой связи портативных маломощных (до 10 мВт) радиостанций с интегральной антенной: 3. …Регистрация и получение разрешений на эксплуатацию таких радиостанций не требуется». Это решение фактически открыло новый диапазон для использования во всех областях промышленности и быта. Тем не менее, компания поставляет приборы для работы в диапазонах 315; 418; 443,92; 868,35 МГц.

Ознакомившись с сухой теорией, и воодушевившись решением № 64, перейдем к практике: где и как можно применить эти микросхемы.

О традиционных приложениях для систем охраны и безопасности, в том числе автомобильных и системах дистанционного управления сказано достаточно. Национальные производители таких комплексов теперь могут воспользоваться недорогими приборами Telecontrolli для создания конкурентной продукции. Обратим особое внимание разработчиков разнообразных охранных датчиков: появляется возможность изготавливать их в беспроводном исполнении. Пока такие приборы, пользующиеся спросом в силу легкости монтажа, полностью импортируются.

Очевидно также, что недорогой и устойчивый радиоканал интересен в системах мониторинга климатических параметров в качестве элемента передачи в системе сбора и передачи показаний любого количества территориально распределенных датчиков, которые могут находиться в парниках, теплицах, инкубаторах, птичниках, элеваторах и прочих объектах агропромышленного комплекса. Основная задача систем такого класса заключается в измерении климатических параметров, регистрации выхода их за установленные пороги и управлении соответствующим оборудованием.

Ярким примером эффективного применения радиоканала является комплекс для измерения температуры в тепличном хозяйстве (парнике, инкубаторе и т.п.). Измерительный комплекс внутри каждой теплицы состоит из Регистратора и необходимого количества автономных датчиков. Каждый автономный датчик содержит непосредственно измеритель температуры, контроллер, передатчик и батарейный источник питания. В качестве измерителя температуры логично использовать цифровой термометр DS1920 или аналогичный производства Dallas Semiconductor (см. Chip News №8, 2000 г., с. 8-10), оснащенный встроенной батарейкой. Такой термометр автоматически фиксирует в энергонезависимой памяти значения температуры через заданные интервалы времени, в то время как контроллер датчика находится в режиме ожидания (минимальное потребление энергии). Периодически он активизируется, устанавливает связь с Регистратором (приемник с радиусом действия до 250 м) и по радиоканалу передает все накопленные со времени последнего сеанса связи показания температуры. Аналогично опрашиваются все датчики, установленные внутри одной теплицы. Передача данных по всему объекту в целом может выполняться проводными средствами, например, по сети microLAN.

Основные преимущества такого измерительного комплекса заключаются в простоте развертывания и изменения конфигурации (датчик можно расположить в любом месте), а также в снижении стоимости внедрения и обслуживания за счет отсутствие проводной связи.

Безусловно, весь измерительный комплекс в теплице может быть построен на проводной связи. Однако существуют ситуации, когда провод не протянешь: регистрация шахтеров, находящихся под землей, учет движения транспортных средств, контроль патрульно-постовой службы.

Регистрация шахтеров является актуальной проблемой в силу того, что учет находящегося под землей персонала в аварийных ситуациях должен проводится мгновенно и достоверно. Однако в силу агрессивных условий окружающей среды средства регистрации должны быть надежно защищены, а регистрация должна выполняться пассивно, без осознанных действий персонала. Такие условия могут быть выполнены, если радиоидентификаторы персонала размещены внутри аккумулятора шахтерской лампы.

Приборы Тelecontrolli могут эффективно применяться для учета соблюдения графиков движения рейсового пассажирского или грузового транспорта. Такие задачи возникают при аренде предприятиями транспорта для перевозки сотрудников к местам работы, при учете выработки и контроле рабочего времени водителей (перевозка стройматериалов, сырья). Оборудовав автомобили электронными идентификаторами с радиоканалом и расположив регистраторы по маршрутам движения, можно уверенно контролировать графики и маршруты движения, не накладывая ограничений на скорость и порядок прохождения маршрутов.

Аналогичное решение применимо и при контроле патрульно-постовой службы, когда нужно быть уверенными, что дежурные обходят заданные маршруты в установленное время. Средства идентификации на базе радиоканала позволят решить эту задачу и гарантировать качественную охрану объектов.

Подведем итоги. Применение микросхем фирмы Telecontrolli для передачи данных в диапазоне 400-900 МГц позволяет не только снизить общую стоимость изделия в целом, но создавать оригинальные системы с новыми потребительскими свойствами.

В последние годы тезис о том, что информационные технологии оказывают самое прямое влияние на состояние и развитие экономики, стал практически общепризнанным. Компьютерный мир еще несколько лет назад стал сетевым. Сетевая инфраструктура дает возможность оперативного обмена данными и доступа к информационным ресурсам, как на локальном уровне, так и в мировом масштабе. Российская проблема заключается в слабости инфраструктуры телекоммуникаций (особенно ее общедоступной, гражданской части) по сравнению с подобной инфраструктурой на Западе. Во многих случаях использование проводных или оптоволоконных линий связи невозможно или экономически нецелесообразно. В этой ситуации одним из наиболее эффективных решений проблемы связи, а зачастую и единственно возможным, является использование радиосетей передачи данных.

К отличительным свойствам беспроводных технологий передачи данных можно отнести:

  • Мобильность. Невозможность подсоединения подвижных абонентов является принципиально непреодолимым ограничением кабельных сетей. Медсестры, врачи, рабочие на конвейере, маклеры на бирже и складские рабочие постоянно перемещаются с места на место. Для них беспроводная технология представляет несковывающий их перемещений канал в проводную сеть, открывая доступ ко всей имеющейся в этой сети информации.
  • Возможность организации сети там, где прокладка кабеля технически невозможна. Например, в зданиях, являющихся памятниками архитектуры.
  • Возможность объединить в сеть удаленных абонентов. Если абоненты разбросаны по обширной малонаселенной (или труднодоступной) территории, то во многих случаях протягивать кабель оказывается экономически нецелесообразно. В России почти 90% радиооборудования используют для связи вне помещений, на многокилометровых расстояниях. Радиосети связывают населенные пункты, до которых просто не доходят телефонные линии. Если все же доходят, то телефонные станции не торопятся предоставлять линии связи в аренду, да и качество связи низкое. Но главное даже в другом — пропускная способность телефонных каналов не оставляет никаких надежд на организацию эффективного обмена данными.
  • Срочность. Надежные коммуникации нужны сейчас, немедленно, а для прокладки кабельной сети требуются колоссальные инвестиции и длительное время. Радиооборудование позволяет развернуть сеть всего за несколько часов. Радиооборудование может также использоваться для организации временных сетей. Например, выставки, избирательная компания и.т.д.

Рассмотрим радиооборудование, которое может быть использовано для создания радиосетей передачи данных, и задачи, которые позволяет решать тот или иной класс оборудования.

Радиооборудование можно классифицировать по используемой частоте. От того, в каком диапазоне работает оборудование зависят такие показатели, как дальность связи, скорость передачи информации, зависимость от погодных условий, требование к обеспечению "прямой видимости".

1,6-30 МГц (Коротковолновый диапазон). Системы работающие в этом диапазоне позволяют передавать данные и голосовые сообщения на расстояния до нескольких тысяч километров, что предоставляет уникальную возможность охвата значительных территорий, в том числе с гористым рельефом, что абсолютно невозможно для традиционных решений в диапазонах УКВ и СВЧ при соизмеримом вложении средств. Скорость передачи в КВ-системах относительно невысокая до 6 Кбит/с. Для реализации радиосистем передачи данных в КВ-диапазоне может быть использован комплекс "Barret 923", который производит компания Barret Communications Pty Ltd. В компексе "Barrett 923" реализованы адаптивные методы анализа радиоканала, что позволяет ему оптимально выбирать диапазон частот, протокол и скорость передачи данных.

136-174 МГц — скорость передачи данных до 19,2 Kбит/с, дальность связи до 70 км, связь может осуществляться "из-за" угла и за горизонтом за счет искривления пути прохождения радиолуча у земли. Радиомодемы, работающие в этом диапазоне, используются для передачи файлов и электронной почты, позволяют организовать мобильный доступ в базы данных. Применяются в территориально распределенных сетях, в системах телеметрии и телеуправления, могут быть очень полезны для таких организаций, как ГАИ, служба скорой медицинской помощи и т.п. Интегральные радиомодемы, работающие в этом диапазоне частот, выпускаются такими фирмами, как Pacific Crest, Maxon,Young Design и др.

НПЦ "Дейтлайн" разработал систему "Ягуар" для построения пакетных радиосетей передачи данных, которая уже в течение длительного времени успешно эксплуатируется территориальными отделениями Сбербанка РФ. Система "Ягуар" обеспечивает высокую надежность передачи данных, гибкость в управлении,возможность легкого наращивания сети на расстояниях до 300 км. Аппаратный комплекс системы может строиться на основе широкой номенклатуры FM-радиостанций и пакетных контроллеров. Специалисты компании "Дейтлайн" рекомендуют использовать трансиверы Uniden IMH4100 и контроллеры Paccom Spirit 2, что обеспечивает наилучшее соотношение цена/качество.

400-512 МГц — скорость передачи данных до 128 Кбит/с, дальность связи до 50 км. Желательно наличие прямой видимости, но возможна работа и на отраженных сигналах. В этом диапазоне могут работать узкополосные cинхронные радиомодемы RAN производства фирмы Wireless, Inc (ранее Мultipoint Networks) (9,6, 19,2, 64, 128 Кбит/с).

Радиомодемы RAN 64/25,128/50 используют модуляцию 16 QAM, что позволяет передавать данные со скоростью 64 Кбит/с в полосе 25 кГц или 128 Кбит/с в полосе 50 кГц. Радиомодемы данного типа применяются для построения высокоскоростных каналов точка-точка для мультиплексированной передачи данных, голоса, видеоизображений и другой информации. На их основе также возможна организация многоузловых территориально распределенных сетей. Радиомодемы RAN могут работать также и в диапазоне 820-960 MГц.

Выше 2ГГц — возможна организация каналов передачи данных со скоростью более 2 Мбит/с, при этом обязательным является условие прямой видимости между антеннами. На этом участке радиочастотного спектра работает оборудование Radio-Еthernet (cтандарт IEEE 802.11). Стандарт Radio-Ethernet имеет два основных применения. Первое из них — беспроводная локальная сеть в стенах одного здания или на территории предприятия, таким образом решается проблема "ограниченной мобильности" в пределах одного предприятия (сотрудник с портативным компьютером, переходящий из одной комнаты в другую отовсюду имеет доступ к сети). Второе применение стандарта Radio-Ethernet решает проблему подсоединения абонентов к большой сети передачи данных или, как говорят связисты, проблему последней мили.

В Radio-Ethernet может применяться технология шумоподобных сигналов или широкополосных сигналов (ШПС). Узкополосные устройства излучают в эфир сигнал с шириной спектра 12,5-200 кГц, причем ширина излучаемого спектра увеличивается с увеличением скорости передачи информации. Узкополосные системы обладают очень существенным недостатком: если в частотном диапазоне такой системы появляются помехи, то качество связи резко падает. Именно эта незащищенность от помех узкополосных систем привела к разработке, сначала для военных применений, ШПС- технологии.

Cистемы на основе шумоподобных сигналов обладают следующими преимуществами:

  • Помехозащищенность
  • Не создаются помехи другим устройствам (Низкая мощность сигнала)
  • Конфиденциальность передач
  • Низкая стоимость при массовом производстве (Низкая мощность сигнала — дешевые высокочастотные компоненты оборудования)
  • Шумоподобный сигнал обеспечивает возможность работы в диапазоне, уже занятыми другими системами радиопередач
  • Высокая скорость передачи

Идея технологии широкополосного сигнала состоит в том, что для передачи информации используется значительно более широкая полоса частот, чем это требуется при передаче в узкополосном канале. Стандарт 802.11 для получения шумоподобных сигналов предусматривает метод прямой последовательности (Direct Sequence Spread Spectrum-DSSS) и метод частотных скачков (Frequency Hopping Spread Spectrum-FHSS).

В методе со скачками по частоте (FHSS) весь диапазон от 2400 МГц до 2483,5 МГц разбит на 79 подканалов. Приемник и передатчик сихронно каждые несколько милисекунд перестраиваются на различные несущие частоты в соответствии с алгоритмом, задаваемым псевдослучайной последовательностью. Лишь приемник, использующий ту же самую последовательность, может принимать сообщение. При этом предполагается, что другие системы работающие в том же частотном диапазоне используют иную последовательность и поэтому практически не мешают друг другу. Для тех случаев, когда два передатчика пытаются использовать ту же самую частоту одновременно, предусмотрен протокол разрешения столкновений по которому передатчик делает попытку повторно послать данные на следующей в последовательности частоте.

Согласно методу с прямой последовательностью(DSSS) диапазон от 2400 МГц до 2483,5 МГц разбит на три широких подканала, которые могут использоваться независимо и одновременно на одной территории. Принцип работы DSSS систем состоит в следующем: в передаваемый радиосигнал вноситься значительая избыточность путем передачи каждого бита информации одновременно в нескольких частотных каналах. Если на каком-либо из них (или сразу на нескольких) появляются помехи, система определяет правильный поток данных путем выбора наибольшего количества одинаковых потоков.

Наиболее крупными производителями обрудования Radio-Ethernet являются Proxim, BreezeCom, Aironet, Cylink, Lucent Technologies, Solectek, WaveAccess. Приятно отметить, что в последнее время стали появляться и отечественные разработки. Например, предприятие "Импульс" выпускает беспроводный Ethernet-бридж "Кросс-8" для конфигурации "точка-точка", который работает в относительно незагруженном диапазоне 37,0-39,5 ГГц, обеспечивая скорость передачи 10 Мбит/с и дальность действия 10 км.

Длительное время на российском рынке доминирующей технологией была передача по методу прямой последовательности (DSSS). Однако, последнее время отечественный рынок начинает испытывать все больший интерес к FHSS. Основная причина этому — "перенаселенность эфира".

На одном и том же пространстве могут сосуществовать, не мешая друг другу, не более трех сетей DSSS. При попытке увеличить число пользователей, такое неэкономное использование эфира может оборачиваться проблемами. FHSS позволяет определить для каждой сети свой набор и последовательность дискретных частот. Еще одна существенная особенность технологии "прыгающей частоы" состоит в том, что весь широкополосный диапазон разбивается на 79 отдельных подканалов. FHSS-оборудование (например, компании BreezeCom) позволяет использовать не все 79 каналов, а любое количество частот из этого набора, вплоть до одной частоты. В системах DSSS использование широкой полосы принципиально необходимо.

ШПС-технология, кроме оборудования Radio-Ethernet, применяется в высокоскоростных синхронных радиомодемах диапазонов 2,4 и 5,7 ГГц. Эти радиомодемы используются для организации дуплексных магистральных синхронных радиоканалов передачи данных со скоростями до 2048 Кбит/с. Оборудование этого класса производят такие компании, как Wireless, Inc (модели RAN64ss, RAN128ss, RAN2048ss), BreezeCom (cерия BreezeLINK), Wave Wireless (SpeedCOM).

ШПС-технология используется еще в одном интересном и весьма полезном продукте фирмы Wireless, Inc — радиомаршрутизаторе WaveNet IP. В отличие от радио-Ethernet устройств это оборудование включает в свой состав маршрутизатор IP и специально предназначенно для организации радиосетей городского и районного масштаба на расстоянии до 30-40 км от центральной станции. Кроме того, конструктивное исполнение WaveNet IP позволяет решить так называемую проблему длинного кабеля. Проблема заключается в том, что достаточно часто точка подключения к локальной сети и точка установки антенны на крыше находяться на достаточно большом расстоянии друг от друга. Оборудование Radio-Ethernet обычно имеет исполнение для использования внутри помещений и может быть применяться только в нормальных климатических условиях. Поскольку высокочастотный радиосигнал испытывает значительное затухание в кабеле, это накладывает серьезное ограничения на максимальную длину кабеля между устройством и антенной. WaveNet IP имеет внешнее погодозащитное исполнение и устанавливается в непосредственной близости от антенны, что позволяет без потерь сигнала размещать высокочастотный блок на расстоянии до 100 м от физической точки входа в сеть.